Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(6): e0252325, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34106956

RESUMEN

Multiple mutations have been described in the human GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase) that degrades glucosylceramide and is pivotal in glycosphingolipid substrate metabolism. Depletion of GCase, typically by homozygous mutations in GBA1, is linked to the lysosomal storage disorder Gaucher's disease (GD) and distinct or heterozygous mutations in GBA1 are associated with increased Parkinson's disease (PD) risk. While numerous genes have been linked to heritable PD, GBA1 mutations in aggregate are the single greatest risk factor for development of idiopathic PD. The importance of GCase in PD necessitates preclinical models in which to study GCase-related mechanisms and novel therapeutic approaches, as well as to elucidate the molecular mechanisms leading to enhanced PD risk in GBA1 mutation carriers. The aim of this study was to develop and characterize a novel GBA1 mouse model and to facilitate wide accessibility of the model with phenotypic data. Herein we describe the results of molecular, biochemical, histological, and behavioral phenotyping analyses in a GBA1 D409V knock-in (KI) mouse. This mouse model exhibited significantly decreased GCase activity in liver and brain, with substantial increases in glycosphingolipid substrates in the liver. While no changes in the number of dopamine neurons in the substantia nigra were noted, subtle changes in striatal neurotransmitters were observed in GBA1 D409V KI mice. Alpha-synuclein pathology and inflammation were not observed in the nigrostriatal system of this model. In summary, the GBA1 D409V KI mouse model provides an ideal model for studies aimed at pharmacodynamic assessments of potential therapies aiming to restore GCase.


Asunto(s)
Glucosilceramidasa/metabolismo , Glicoesfingolípidos/metabolismo , Animales , Encéfalo/metabolismo , Femenino , Técnicas de Sustitución del Gen , Glucosilceramidasa/genética , Immunoblotting , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos Parkinsonianos/enzimología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , Mutación Puntual/genética
2.
Blood ; 133(4): 331-343, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30429161

RESUMEN

Conditional knockout (KO) mouse models are invaluable for elucidating the physiological roles of platelets. The Platelet factor 4-Cre recombinase (Pf4-Cre) transgenic mouse is the current model of choice for generating megakaryocyte/platelet-specific KO mice. Platelets and leukocytes work closely together in a wide range of disease settings, yet the specific contribution of platelets to these processes remains unclear. This is partially a result of the Pf4-Cre transgene being expressed in a variety of leukocyte populations. To overcome this issue, we developed a Gp1ba-Cre transgenic mouse strain in which Cre expression is driven by the endogenous Gp1ba locus. By crossing Gp1ba-Cre and Pf4-Cre mice to the mT/mG dual-fluorescence reporter mouse and performing a head-to-head comparison, we demonstrate more stringent megakaryocyte lineage-specific expression of the Gp1ba-Cre transgene. Broader tissue expression was observed with the Pf4-Cre transgene, leading to recombination in many hematopoietic lineages, including monocytes, macrophages, granulocytes, and dendritic and B and T cells. Direct comparison of phenotypes of Csk, Shp1, or CD148 conditional KO mice generated using either the Gp1ba-Cre or Pf4-Cre strains revealed similar platelet phenotypes. However, additional inflammatory and immunological anomalies were observed in Pf4-Cre-generated KO mice as a result of nonspecific deletion in other hematopoietic lineages. By excluding leukocyte contributions to phenotypes, the Gp1ba-Cre mouse will advance our understanding of the role of platelets in inflammation and other pathophysiological processes in which platelet-leukocyte interactions are involved.


Asunto(s)
Plaquetas/metabolismo , Integrasas/metabolismo , Leucocitos/metabolismo , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Aglutinación , Animales , Células de la Médula Ósea/citología , Proteína Tirosina Quinasa CSK , Linaje de la Célula , Tamaño de la Célula , Marcación de Gen , Homeostasis , Recuento de Linfocitos , Megacariocitos/citología , Megacariocitos/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Fenotipo , Agregación Plaquetaria , Factor Plaquetario 4/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Recombinación Genética/genética , Bazo/citología , Familia-src Quinasas/metabolismo
3.
PLoS One ; 6(6): e21055, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21695272

RESUMEN

BACKGROUND: The p38α Mitogen-Activated Protein Kinase (MAPK) regulates stress- and inflammation-induced cellular responses. Factors implicated in the development of atherosclerosis including modified low-density lipoprotein (LDL), cytokines and even shear stress induce p38 activation in endothelial cells and macrophages, which may be important for plaque formation. This study investigates the effects of endothelial- and macrophage-specific deficiency of p38α in atherosclerosis development, in Apolipoprotein E deficient (ApoE(-/-)) mice. METHODOLOGY/PRINCIPAL FINDINGS: ApoE(-/-) mice with macrophage or endothelial cell-specific p38α deficiency were fed a high cholesterol diet (HCD) for 10 weeks and atherosclerosis development was assessed by histological and molecular methods. Surprisingly, although p38α-deficiency strongly attenuated oxidized LDL-induced expression of molecules responsible for monocyte recruitment in endothelial cell cultures in vitro, endothelial-specific p38α ablation in vivo did not affect atherosclerosis development. Similarly, macrophage specific deletion of p38α did not affect atherosclerotic plaque development in ApoE(-/-) mice. CONCLUSIONS: Although previous studies implicated p38α signaling in atherosclerosis, our in vivo experiments suggest that p38α function in endothelial cells and macrophages does not play an important role in atherosclerotic plaque formation in ApoE deficient mice.


Asunto(s)
Apolipoproteínas E/deficiencia , Aterosclerosis/enzimología , Aterosclerosis/patología , Células Endoteliales/metabolismo , Macrófagos/enzimología , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Animales , Aterosclerosis/inducido químicamente , Aterosclerosis/metabolismo , Moléculas de Adhesión Celular/metabolismo , Quimiocinas/metabolismo , Colesterol en la Dieta/efectos adversos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Células Endoteliales/patología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Lipoproteínas LDL/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Proteína Quinasa 14 Activada por Mitógenos/deficiencia , Proteína Quinasa 14 Activada por Mitógenos/genética , Placa Aterosclerótica/inducido químicamente , Placa Aterosclerótica/enzimología , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología
4.
Genesis ; 47(5): 323-9, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19263497

RESUMEN

The nuclear factor kappaB (NF-kappaB) signaling pathway regulates immune and inflammatory responses and is implicated in the pathogenesis of multiple diseases. The principal mechanism controlling NF-kappaB activation depends on the association of NF-kappaB transcription factor dimers with IkappaB molecules, which prevents the accumulation of NF-kappaB in the nucleus and the activation of target gene transcription. Monitoring the nucleocytoplalsmic shuttling of NF-kappaB factors is a reliable method to study the dynamic regulation of NF-kappaB activity. Here, we generated knock-in mice expressing a fusion protein between the green fluorescent protein (GFP) and the p65/RelA NF-kappaB subunit (GFP-p65) from the endogenous p65 genomic locus. Homozygous GFP-p65 mice developed normally and showed normal NF-kappaB activation, demonstrating that the GFP-p65 fusion protein functionally substitutes for wild-type p65. Live imaging of primary cells from GFP-p65 mice allowed real-time monitoring of p65 nucleocytoplasmic shuttling upon NF-kappaB activation. Therefore, the GFP-p65 knock-in mice constitute an invaluable tool for studying the dynamic regulation of NF-kappaB.


Asunto(s)
Técnicas de Sustitución del Gen/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Recombinantes de Fusión/genética , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Marcación de Gen/métodos , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo
5.
Cell Metab ; 8(5): 372-83, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19046569

RESUMEN

Atherosclerosis is a progressive disorder of the arterial wall and the underlying cause of cardiovascular diseases such as heart attack and stroke. Today, atherosclerosis is recognized as a complex disease with a strong inflammatory component. The nuclear factor-kappaB (NF-kappaB) signaling pathway regulates inflammatory responses and has been implicated in atherosclerosis. Here, we addressed the function of NF-kappaB signaling in vascular endothelial cells in the pathogenesis of atherosclerosis in vivo. Endothelium-restricted inhibition of NF-kappaB activation, achieved by ablation of NEMO/IKKgamma or expression of dominant-negative IkappaBalpha specifically in endothelial cells, resulted in strongly reduced atherosclerotic plaque formation in ApoE(-/-) mice fed with a cholesterol-rich diet. Inhibition of NF-kappaB abrogated adhesion molecule induction in endothelial cells, impaired macrophage recruitment to atherosclerotic plaques, and reduced expression of cytokines and chemokines in the aorta. Thus, endothelial NF-kappaB signaling orchestrates proinflammatory gene expression at the arterial wall and promotes the pathogenesis of atherosclerosis.


Asunto(s)
Aterosclerosis/patología , Células Endoteliales/metabolismo , Endotelio Vascular/patología , FN-kappa B/metabolismo , Animales , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Células Cultivadas , Colesterol en la Dieta/administración & dosificación , Endotelio Vascular/metabolismo , Femenino , Quinasa I-kappa B/biosíntesis , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Noqueados , FN-kappa B/antagonistas & inhibidores , Transducción de Señal
6.
Proc Natl Acad Sci U S A ; 105(34): 12435-8, 2008 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-18713867

RESUMEN

B cell activating factor (BAFF) signals through BAFF-R to promote mature B cell survival. Recent analyses of BAFF-induced signaling revealed direct association between augmented B cell metabolic fitness and activation of Akt, one of the key regulators of cell survival. The strongest and most reproducible induction of Akt occurs with significant delay (24 h) after BAFF treatment, where it precedes activation of anabolism. It was also recently shown that BAFF induces sustained Erk activation and increased turnover of the proapoptotic molecule Bim. Here we show that these BAFF-induced signaling pathways are mediated by BAFF-R and represent previously unknown arms of I kappa B kinase (IKK)1-dependent signaling. In combination with the known role of IKK1 in regulating transcription of prosurvival genes, our data underscore the central role of IKK1 in coordinating multiple BAFF-R-mediated signaling pathways controlling mature B cell homeostasis.


Asunto(s)
Factor Activador de Células B/metabolismo , Linfocitos B/metabolismo , Quinasa I-kappa B/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Receptor del Factor Activador de Células B/metabolismo , Linfocitos B/citología , Tamaño de la Célula , Células Cultivadas , Homeostasis , Ratones , Fosforilación
7.
Nature ; 446(7135): 557-61, 2007 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-17361131

RESUMEN

Deregulation of intestinal immune responses seems to have a principal function in the pathogenesis of inflammatory bowel disease. The gut epithelium is critically involved in the maintenance of intestinal immune homeostasis-acting as a physical barrier separating luminal bacteria and immune cells, and also expressing antimicrobial peptides. However, the molecular mechanisms that control this function of gut epithelial cells are poorly understood. Here we show that the transcription factor NF-kappaB, a master regulator of pro-inflammatory responses, functions in gut epithelial cells to control epithelial integrity and the interaction between the mucosal immune system and gut microflora. Intestinal epithelial-cell-specific inhibition of NF-kappaB through conditional ablation of NEMO (also called IkappaB kinase-gamma (IKKgamma)) or both IKK1 (IKKalpha) and IKK2 (IKKbeta)-IKK subunits essential for NF-kappaB activation-spontaneously caused severe chronic intestinal inflammation in mice. NF-kappaB deficiency led to apoptosis of colonic epithelial cells, impaired expression of antimicrobial peptides and translocation of bacteria into the mucosa. Concurrently, this epithelial defect triggered a chronic inflammatory response in the colon, initially dominated by innate immune cells but later also involving T lymphocytes. Deficiency of the gene encoding the adaptor protein MyD88 prevented the development of intestinal inflammation, demonstrating that Toll-like receptor activation by intestinal bacteria is essential for disease pathogenesis in this mouse model. Furthermore, NEMO deficiency sensitized epithelial cells to tumour-necrosis factor (TNF)-induced apoptosis, whereas TNF receptor-1 inactivation inhibited intestinal inflammation, demonstrating that TNF receptor-1 signalling is crucial for disease induction. These findings demonstrate that a primary NF-kappaB signalling defect in intestinal epithelial cells disrupts immune homeostasis in the gastrointestinal tract, causing an inflammatory-bowel-disease-like phenotype. Our results identify NF-kappaB signalling in the gut epithelium as a critical regulator of epithelial integrity and intestinal immune homeostasis, and have important implications for understanding the mechanisms controlling the pathogenesis of human inflammatory bowel disease.


Asunto(s)
Colitis/inmunología , Colitis/patología , Células Epiteliales/enzimología , Células Epiteliales/inmunología , Quinasa I-kappa B/metabolismo , Inmunidad Innata/inmunología , Animales , Apoptosis/efectos de los fármacos , Enfermedad Crónica , Colitis/enzimología , Colon/inmunología , Colon/patología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Homeostasis , Quinasa I-kappa B/deficiencia , Intestinos/enzimología , Intestinos/inmunología , Intestinos/microbiología , Intestinos/patología , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Factores de Necrosis Tumoral/farmacología
8.
Nat Cell Biol ; 9(4): 461-9, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17351639

RESUMEN

The kinase IKK1 (also known as IKKalpha) was previously reported to regulate epidermal development and skeletal morphogenesis by acting in keratinocytes to induce their differentiation in an NF-kappaB independent manner. Here, we show that mice with epidermal keratinocyte-specific IKK1 ablation (hereafter referred to as IKK1(EKO)) develop a normally differentiated stratified epidermis, demonstrating that the function of IKK1 in inducing epidermal differentiation is not keratinocyte-autonomous. Despite normal epidermal stratification, the IKK1(EKO) mice display impaired epidermal-barrier function and increased transepidermal water loss, due to defects in stratum corneum lipid composition and in epidermal tight junctions. These defects are caused by the deregulation of retinoic acid target genes, encoding key lipid modifying enzymes and tight junction proteins, in the IKK1-deficient epidermis. Furthermore, we show that IKK1-deficient cells display impaired retinoic acid-induced gene transcription, and that IKK1 is recruited to the promoters of retinoic acid-regulated genes, suggesting that one mechanism by which IKK1 controls epidermal-barrier formation is by regulating the expression of retinoic acid receptor target genes in keratinocytes.


Asunto(s)
Diferenciación Celular/fisiología , Epidermis/metabolismo , Quinasa I-kappa B/metabolismo , Queratinocitos/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Proliferación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Células Epidérmicas , Epidermis/ultraestructura , Femenino , Miembro Anterior/anomalías , Miembro Anterior/irrigación sanguínea , Miembro Anterior/metabolismo , Perfilación de la Expresión Génica , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/genética , Queratinocitos/citología , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Enfermedades de la Piel/genética , Enfermedades de la Piel/metabolismo , Transcripción Genética/efectos de los fármacos , Tretinoina/farmacología
9.
J Biol Chem ; 281(5): 2803-11, 2006 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-16319076

RESUMEN

Mammalian profilins are abundantly expressed actin monomer-binding proteins, highly conserved with respect to their affinities for G-actin, poly-L-proline, and phosphoinositides. Profilins associate with a large number of proline-rich proteins; the physiological significance and regulation of which is poorly understood. Here we show that profilin 2 associates with dynamin 1 via the C-terminal proline-rich domain of dynamin and thereby competes with the binding of SH3 ligands such as endophilin, amphiphysin, and Grb2, thus interfering with the assembly of the endocytic machinery. We also present a novel role for the brain-specific mouse profilin 2 as a regulator of membrane trafficking. Overexpression of profilin 2 inhibits endocytosis, whereas lack of profilin 2 in neurons results in an increase in endocytosis and membrane recycling. Phosphatidylinositol 4,5-bisphosphate releases profilin 2 from the profilin 2-dynamin 1 complex as well as from the profilin 2-actin complex, suggesting that profilin 2 is diverging the phosphoinositide signaling pathway to actin polymerization as well as endocytosis.


Asunto(s)
Dinamina I/metabolismo , Endocitosis , Profilinas/fisiología , Dominios Homologos src , Actinas/metabolismo , Animales , Sitios de Unión , Ligandos , Ratones , Complejos Multiproteicos/metabolismo , Neuronas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Profilinas/metabolismo , Unión Proteica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...